The NCAR/EOL Field Catalog

An Information Repository For Use In Field Projects

Al Cooper

NCAR

Disclaimer:

I'm Just Demonstrating; Greg Stossmeister et al. are the Architects

- To collect, at one site, information needed to make decisions.
- ② To provide a convenient repository for the collection of reports on instrument status, mission summaries, etc..
- To serve information needed during the mission, e.g., by the flight crew.
- To help analysts understand cases and find appropriate data.

- To collect, at one site, information needed to make decisions.
- 2 To provide a convenient repository for the collection of reports on instrument status, mission summaries, etc..
- To serve information needed during the mission, e.g., by the flight crew.
- To help analysts understand cases and find appropriate data.

- 1 To collect, at one site, information needed to make decisions.
- 2 To provide a convenient repository for the collection of reports on instrument status, mission summaries, etc..
- To serve information needed during the mission, e.g., by the flight crew.
- To help analysts understand cases and find appropriate data.

- 1 To collect, at one site, information needed to make decisions.
- ② To provide a convenient repository for the collection of reports on instrument status, mission summaries, etc...
- To serve information needed during the mission, e.g., by the flight crew.
- To help analysts understand cases and find appropriate data.

Primary Uses:

- 1 To collect, at one site, information needed to make decisions.
- ② To provide a convenient repository for the collection of reports on instrument status, mission summaries, etc..
- To serve information needed during the mission, e.g., by the flight crew.
- To help analysts understand cases and find appropriate data.

It is <u>not</u> a data archive, but a guide to the data

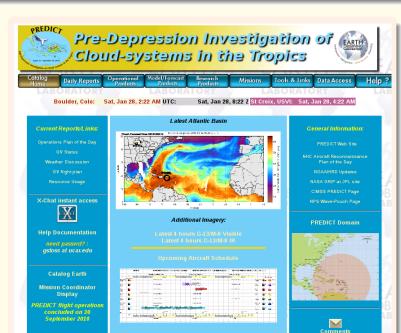
Analysts should go to original data.

- General information on the project
 - (a) Links to important tools and references
 - (b) Schedules, facilities, and plans

- General information on the project
 - (a) Links to important tools and references
 - (b) Schedules, facilities, and plans
- Operational products
 - (a) satellite, radar
 - (b) synoptic upper-air and surface maps

- General information on the project
 - (a) Links to important tools and references
 - (b) Schedules, facilities, and plans
- Operational products
 - (a) satellite, radar
 - (b) synoptic upper-air and surface maps
- Forecast and model products

- General information on the project
 - (a) Links to important tools and references
 - (b) Schedules, facilities, and plans
- Operational products
 - (a) satellite, radar
 - (b) synoptic upper-air and surface maps
- Forecast and model products
- Research products and daily reports
 - (a) plan-of-the-day, flight plans, instrument status
 - (b) flight tracks, video/photos, mission reports and summaries


- General information on the project
 - (a) Links to important tools and references
 - (b) Schedules, facilities, and plans
- Operational products
 - (a) satellite, radar
 - (b) synoptic upper-air and surface maps
- Forecast and model products
- Research products and daily reports
 - (a) plan-of-the-day, flight plans, instrument status
 - (b) flight tracks, video/photos, mission reports and summaries
- 5 Links to in-field (preliminary) data
 - (a) flight tracks; preliminary data plots
 - (b) comments on instrument performance / QC

- Products and structure will vary with needs of the project.
- PREDICT is a good recent example.
- Catalogs are intended to be permanent;
 All 67 produced to date, spanning 16 y, are still live.
- The PREDICT catalog can be found at this URL: http://catalog.eol.ucar.edu/predict

- Products and structure will vary with needs of the project.
- PREDICT is a good recent example.
- Catalogs are intended to be permanent;
 All 67 produced to date, spanning 16 y, are still live.
- The PREDICT catalog can be found at this URL: http://catalog.eol.ucar.edu/predict

- Products and structure will vary with needs of the project.
- PREDICT is a good recent example.
- Catalogs are intended to be permanent;
 All 67 produced to date, spanning 16 y, are still live.
- The PREDICT catalog can be found at this URL: http://catalog.eol.ucar.edu/predict

- Products and structure will vary with needs of the project.
- PREDICT is a good recent example.
- Catalogs are intended to be permanent;
 All 67 produced to date, spanning 16 y, are still live
- The PREDICT catalog can be found at this URL: http://catalog.eol.ucar.edu/predict

Catalog Home

Daily Reports

Operational Products

Model/Forecast Products

Research Products Missions

Tools & Links Data Access

Help?

Boulder, Colo:

Sat. Jan 28, 2:22 AM UTC:

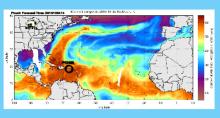
Sat, Jan 28, 8:22 Z St Croix, USVI: Sat, Jan 28, 4:22 AM

Current Reports/Links:

Weather Discussion

X-Chat instant access

Help Documentation


gstoss at ucar.edu

Catalog Earth

Mission Coordinator Display

PREDICT flight operations concluded on 30 September 2010

Latest Atlantic Basin

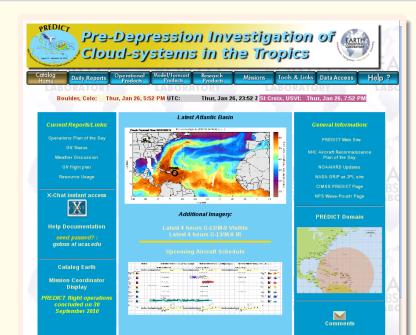
Additional Imagery:

	W9-3	4 CONTROL OF THE PARTY SHARES		MERCH OFFICE ALL COMPANY PROCESS.	A DESCRIPTION OF SECURITY AND ADDRESS.	SELECT HER STATE OF THE SECOND STATE OF THE SE		
				a comment	THE REAL PROPERTY.	-		
		100.00		45.40	2000	240	٠	*
		*******	-	7897.	Owner, or	70.	ġ.	-
		ad a la		9.111	O delica	-	٠	٠.
		**************************************		PERM		25.	ė.	4
. i 🖭						-	8	44
· 🔳		Oncome Common		AND MAIN		235.1	×.	40
- E	100			No.		247	ġ.	
				200				

General Information:

PREDICT Web Site

NOAA/HRD Updates


NASA GRIP at JPL site

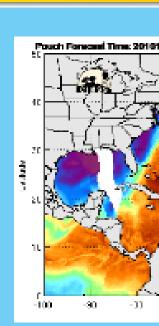
NPS Wave-Pouch Page

PREDICT Domain

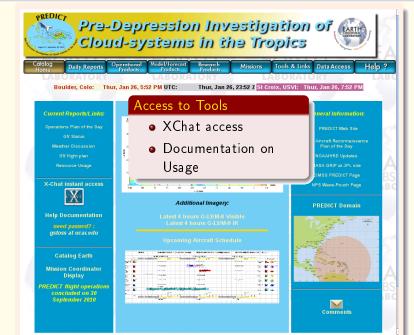
Current Reports/Links:

Operations Plan of the Day

GV Status


Weather Discussion

GV flight plan


Resource Usage

X-Chat instant access

X-Chat instant access

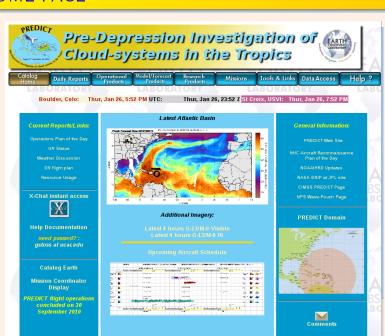
Help Documentation

need passwd? : gstoss at ucar.edu

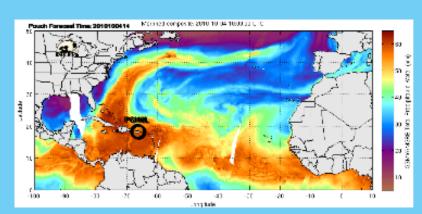
Catalog Earth

Miccian Coordinator

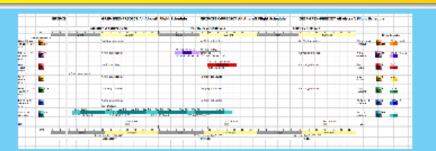
gstoss at ucar.edu


Catalog Earth

Mission Coordinator Display


PREDICT flight operations concluded on 30 September 2010

Latest Atlantic Basin



Additional Imagery:

Latest 4 hours G-13/M-9 Visible Latest 4 hours G-13/M-9 IR

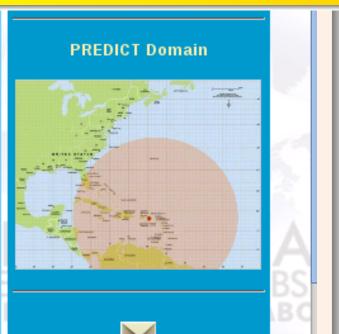
(iv) copy o regident of BESWINNESS

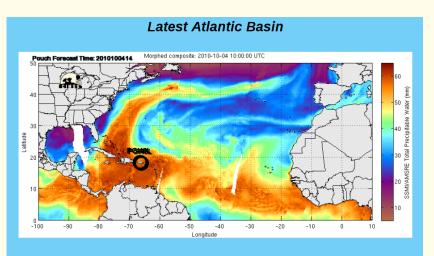
General Information:

PREDICT Web Site

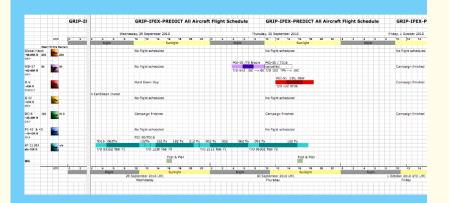
NHC Aircraft Reconnaissance Plan of the Day

NOAA/HRD Updates

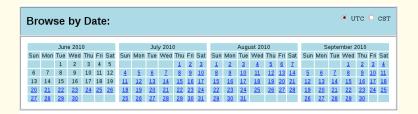

NASA GRIP at JPL site

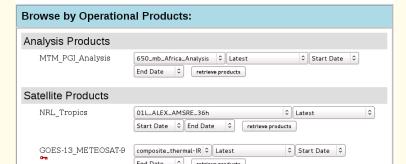

CIMSS PREDICT Page

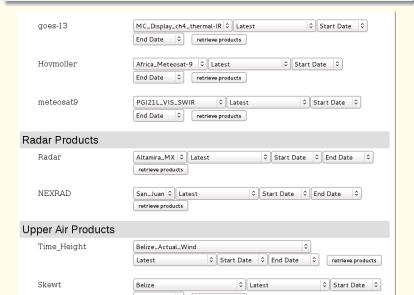
NPS Wave-Pouch Page



Additional Imagery:

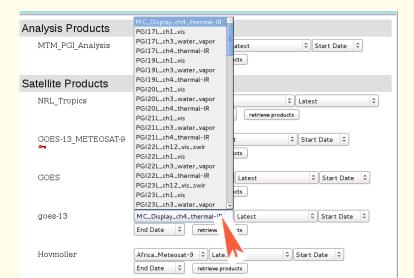

Latest 4 hours G-13/M-9 Visible Latest 4 hours G-13/M-9 IR

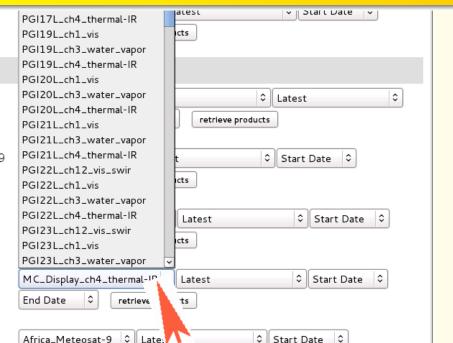

Upcoming Aircraft Schedule


OPERATIONAL PRODUCTS

Stored By Date / Time

Moving Down Page:

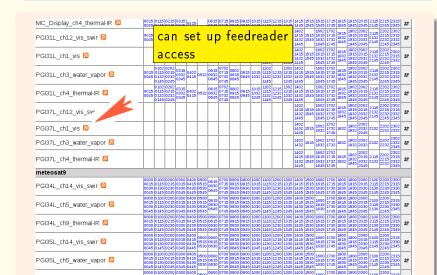



Includes Satellite, Upper Air, Surface, etc.

Surface Products	
AOML_Analyses	SST_analysis
OPC_Surface_Analysis	unified_analysis
Text Products	
NHC_text	Aviation_Advisory
Interactive Map Produc	ets
cosmic	interactive_soundings ♦ Latest ♦ End Date ♦ retrieve products

Back to PREDICT Field Catalog

Under GOES-13, many channels:

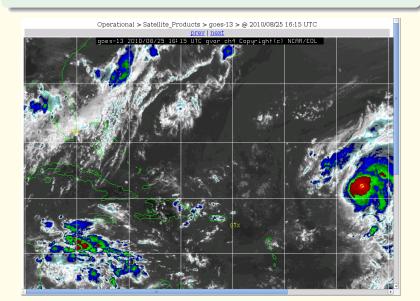

Click on date; display then shows individual products

Then click on time to see image

MC_Display_ch4_thermal-IR	0015 0045				0415										1415 1445		_		Ĭ.				2215 2245	
PGI31L_ch12_vis_swir 🚨	0015 0045	0102 0115 0132 0145	0202 0215 0232 0245	0315 0332 0345	0402 0415	0532	0615 0632 0645	0702 0715 0732 0745	0802 0815 0845	0915 0945	1045		1215 1232 1245	1302 1315 1332 1345	1402 1415 1432 1445	1515 1545	1602 1615 1632 1645	17. 171 173. 1745	١	102 15 12	2002 2015 2032 2045		2245	2330 2345
PGI31L_ch1_vis 🔕									0845	0915 0945	1045			1345	1402 1415 1432 1445		1632 1645	1745	1 1), 18	7	45		2215 2232 2245	-
PGI31L_ch3_water_vapor			0215 0232 0245	0315 0332 0345	0402 0415	0532	0615 0632 0645	0702 0715 0732 0745	0802 0815 0845	0915 0945	1015 1032	1102 1115 1132 1145		1345	1402 1415 1432 1445		1645	1745	1815 1832 1845	1915 1932 1945	2045	2115 2132 2145	2202 2215 2232 2245	2302 2315 2332 2345
PGI31L_ch4_thermal-IR	0015 0045	0102 0115 0132 0145	0202 0215 0232 0245	0315 0332 0345	0402 0415	0532	0615 0632 0645	0702 0715 0732 0745	0802 0815 0845	0915 0945	1015 1032 1045	1102 1115 1132 1145	1215 1232 1245	1302 1315 1332 1345	1402 1415 1432 1445	1515 1545	1602 1615 1632 1645	1702 1715 1732 1745	1815 1832 1845	1902 1915 1932 1945	2002 2015 2032 2045	2115 2132 2145	2202 2215	2303
PGI37L_ch12_vis_swir															1402 1415 1432 1445	1515 1545	1602 1615 1632 1645		1815 1832 1845		2002 2015 2032 2045	2115 2132 2145	2222	230 231 233 234
PGI37L_ch1_vis 🔕															1402 1432 1445	15 15	1602 1632	1702 1732 1745	1832	1902 1932	2002 2032 2045		2202 2232	
PGI37L_ch3_water_vapor 🚨															1432			1/32	1832	1902 1932	-	2132	2202 2232	234
PGI37L_ch4_thermal-IR															1402 1415 1432 1445	1515 1545	1602 1615 1632 1645	1702 1715 1732 1745	1815 1832	1902 1932 1945	2002 2015 2032 2045	2115 2132	2202 2215 2232	2302 2315 2332 2345
meteosat9																								
PGI34L_ch14_vis_swir	0000 0015 0030 0045	0100 0115 0130 0145	0200 0215 0230 0245	0300 0315 0330 0345	0400 0415 0430 0445	0500 0515 0530 0545	0615 0630 0645	0700 0715 0730 0745	0800 0815 0830 0845	0900 0915 0930 0945	1000 1015 1030 1045	11100 11115 11130 11145	1200 1215 1230 1245	1300 1315 1330 1345	1415 1415 1430 1445	1500 1515 1530 1545	1600 1615 1630 1645	1700 1715 1730 1745	1800 1815 1830 1845	1900 1915 1930 1945	2000 2015 2030 2045	2100 2115 2130 2145	2200 2215 2230 2245	2300 2319 2330 2349
PGI34L_ch5_water_vapor	0000 0015 0030 0045	0100 0115 0130 0145	0200 0215 0230 0245	0300 0315 0330 0345	0400 0415 0430 0445	0500 0515 0530 0545	0615 0630 0645	0700 0715 0730 0745	0800 0815 0830 0845	0900 0915 0930 0945	1000 1015 1030 1045	11100 11115 11130 11145	1200 1215 1230 1245	1300 1315 1330 1345	1400 1415 1430 1445	1500 1515 1530 1545	1600 1615 1630	1700 1715 1730 1745	1800 1815 1830 1845	1900 1915 1930 1945	2000 2015 2030 2045	- 200	2230 2245	234
PGI34L_ch9_thermal-IR	0000 0015 0030 0045	0100 0115 0130 0145	0200 0215 0230 0245	0300 0315 0330 0345	0400 0415 0430 0445	0500 0515 0530 0545	0600 0615 0630 0645	0700 0715 0730 0745	0800 0815 0830 0845	0900 0915 0930 0945	1000 1015 1030 1045	1100 1115 1130 1145	1200 1215 1230 1245	1300 1315 1330 1345	1400 1415 1430 1445	1500 1515 1530 1545	1600 1615 1630 1645	1700 1715 1730 1745	1800 1815 1830 1845	1900 1915 1930 1945	2000 2015 2030 2045	2100 2115 2130 2145	2200 2215 2230 2245	2300 2315 2330 2345
PGI35L_ch14_vis_swir	0000 0015 0030 0045	0100 0115 0130 0145	0200 0215 0230 0245	0300 0315 0330 0345	0400 0415 0430 0445	0500 0515 0530	0600 0615 0630	0700 0715 0730 0745	0800 0815 0830 0845	0900 0915 0930 0945	1000 1015 1030 1045	1100 1115 1130 1145	1200 1215 1230 1245	1300 1315 1330 1345	1400 1415 1430 1445	1500 1515 1530 1545	1600 1615 1630	1700	1800 1815 1830 1845		2000 2015		2200 2215	231
PGI35L ch5 water vapor 🗟	0000 0015 0030	0100 0115	0200 0215 0230	0300	0400 0415	0500 0515	0600 0615	0700 0715	0800 0815	0900	1000	1100 1115	1200 1215	1300 1315	1400 1415 1430	1500 1515 1530	1600 1615 1630	1700 1730	1800 1815 1830		2000		2200 2215	200

Click on date; display then shows individual products

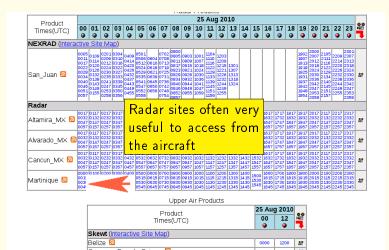
Then click on time to see image



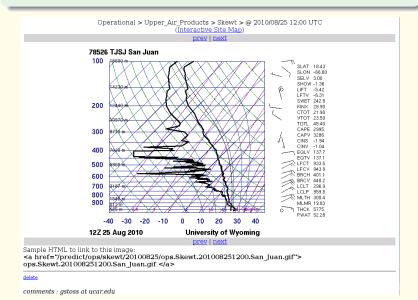
Click on date; display then shows individual products

Then click on time to see image

Example: GOES IR



Radar and Sounding Examples



Upper Air Products			
Product	25 Aug	g 2010	
Times(UTC)	00 •	12	3
Skewt (Interactive Site Map)			
Belize	0000	1200	9 0 1423
Cayenne_French_Guiana 🔕	0000	1200	20
Curacao_Netherland_Antilles	0000	1200	20
Dakar 🗖		1200	
Grantley_Adams_Barbados Grantley_Adams_Barbados		1200	
La_Raizet_Guadeloupe	0000	1200	20
Noceau		1200	

Radar and Sounding Examples

Available in Skew-T plots

Model Products:

- SHIPS Intensity
- NCEP EMC Track
- Marsupial Pouch
- NCAR WRF ARW
- NHC Composite Tracks
- CIRA RAMMB TC Formation Probability

- CMC
- GFDL
- Global Ensemble (NCEP, EMCWF)
- NRL NOGAPS
- NCEP GFS
- NCEP NAM

Model Products:

- SHIPS Intensity
- NCEP EMC Track
- Marsupial Pouch
- NCAR WRF ARW
- NHC Composite Tracks
- CIRA RAMMB TC
 Formation Probability

- CMC
- GFDL
- Global Ensemble (NCEP, EMCWF)
- NRL NOGAPS
- NCEP GFS
- NCEP NAM

Similar Tools for Feedreader and Movies

Easy access: Select times and click symbol,

Example For A Specific Date

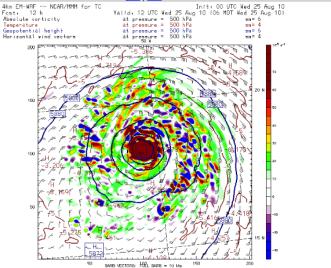
Available Model Products for 2010/08/25 UTC

 $\Previous \ Date(UTC) \ \ Choose \ Date(UTC) \ \ \\ \hline Next \ Date(UTC) \ \ \\ \hline$

SHIPS Intensity Forecast Products

Forecast		25 Au	g 2010		
Times(UTC)	00	06	12	18	90
■TPC_SHIPS - Analysis and Forect	ast fro	n 2010	0/08/25	00:00	UTC
AL06_Intensity_Forecast	000hr				
AL96_Intensity_Forecast	000hr				
■TPC_SHIPS - Analysis and Forect	ast fro	n 2010	0/08/25	06:00	UTC
AL06_Intensity_Forecast		000hr			
AL96_Intensity_Forecast		000hr			
<u>™TPC_SHIPS</u> - Analysis and Forect	ast froi	n 2010	0/08/25	12:00	UTC
AL06_Intensity_Forecast			000hr		
AL07_Intensity_Forecast			000hr		
■TPC_SHIPS - Analysis and Forect	ast fro	n 2010	0/08/25	18:00	UTC
AL06_Intensity_Forecast				000hr	
AL07 Intensity Forecast				000hr	


NCEP EMC Track Forecast Products


Forecast		25 Aug 2010							
Times(UTC)	00	06	12	18	88				
NCEP_EMC_Storm_Tracks - Analysis ar	d Fore	ast fro	n 2010/	08/25 00	:00 UTC				
СМС	0->								

WRF Runs Available:

Forecast																								
Times(UTC)	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
MRF_4km_hu	ır - /	۱na	lys	s a	nd	For	eca	st f	rom	1 20	10/	08/2	25 0	0:0	0 U	TC								
0-5km_shear	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11.hr	12hr	13hr	14 hr	15 hr	16 hr	17 hr	18 hr	19 hr	20hr	21hr	22hr	23hr
300mb	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09 h r	10 hr	11 hr	12hr	13hr	14hr	15hr	16 hr	17hr	18 hr	19 hr	20hr	21hr	22hr	23hr
500mb	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11.hr	12hr	13hr	14hr	15hr	16 hr	17 hr	18 hr	19 hr	20 hr	21hr	22hr	23hr
700mb	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11hr	12hr	13hr	14hr	15hr	16hr	17hr	18 hr	19 hr	20hr	21hr	22hr	23hr
850mb	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09 h r	10 hr	11hr	12hr	13hr	14hr	15hr	16 hr	17hr	18 hr	19 hr	20hr	21hr	22hr	23hr
cloud_top_temp	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10hr	11hr	12hr	13hr	14 hr	15hr	16hr	17 hr	18hr	19hr	20hr	21hr	22hr	23hr
mslp	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11.hr	12hr	13hr	14hr	15hr	16hr	17hr	18hr	19 hr	20hr	21hr	22hr	23hr
precip_explicit	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11hr	12hr	13hr	14hr	15hr	16hr	17hr	18hr	19 hr	20hr	21hr	22hr	23hr
precip_mix_ratio	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10hr	11hr	12hr	13hr	14 hr	15hr	16 hr	17 hr	18hr	19hr	20hr	21hr	22hr	23hr
reflectivity	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11hr	12hr	13hr	14 hr	15hr	16hr	17hr	18 hr	19 hr	20hr	21hr	22hr	23hr
sfc_dew	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11 hr	12hr	13hr	14hr	15hr	16hr	17hr	18hr	19 hr	20hr	21hr	22hr	23hr
sfc_winds	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10 hr	11.hr	12hr	13hr	14 hr	15hr	16hr	17 hr	18hr	19 hr	20hr	21hr	22hr	23hr
tot_precip_water	00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09hr	10hr	11hr	12hr	13hr	14 hr	15hr	16hr	17 hr	18hr	19hr	20hr	21hr	22hr	23hr
<u> </u>	ir - /	۱na	lys	s a	nd	For	eca	st f	rom	120	10/	08/2	25 1	2:0	0 U	TC								
0-5km_shear													00 hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09 hr	10 hr	11hr
300mb													00 hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09 hr	10 hr	11hr
500mb													00 hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09 hr	10 hr	11hr
700mb													00 hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09 hr	10 hr	11hr
850mb													00hr	01hr	02hr	03hr	04hr	05hr	06hr	07hr	08hr	09 hr	10 hr	11hr

Example Model Images

Typical Operations Reports

- Plan of the day
- Weather briefing
- Status of equipment
- Flight Plan

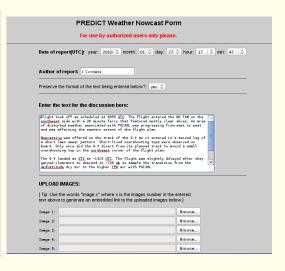
- Mission summary, science director
- Mission summary, flight scientist
- Photo archive
- Notes by other project participants

Typical Operations Reports

- Plan of the day
- Weather briefing
- Status of equipment
- Flight Plan

- Mission summary, science director
- Mission summary, flight scientist
- Photo archive
- Notes by other project participants

Generated via Forms for Consistency


EXAMPLE: Weather Discussion

- Entry Boxes: date, author
- Text entry boxes for:
 - review of previous day's forecast and current conditions
 - 24 h outlook
 - 24-48 h outlook
 - extended outlook
- Ability to upload images and include links to them

Example: "Nowcast" Form

Procedure:

- set date and name
- type in entries, using "Image 1" etc to refer to images
- set files for upload in image windows
- click "upload" button (uses FTP, needs password)
- result: text with links to images in the catalog

Example Weather Forecast - excerpt

Discussion: a. Synoptic Broad upper-level ENE flow was observed over the Southeast U.S. and the Gulf of Mexico on the poleward side of a weak trough that's persisted over the Caribbean (Fig. 2). The cold low mentioned in previous discussions was located to the NNW of Puerto Rico and continues to show signs of shearing apart as it merges with cyclonic flow on the southwest portion of the upper-level trough. Mid to upper-level flow does seem to be favoring the development of cyclonic vorticity northwest of this cold low near ~23N 72W. Extremely dry mid to upper-level air in the central Atlantic is evident in GOES water vapor imagery (Fig. 2). while two main areas of low to mid-level dry air can be seem in TPW imagery: a mid-latitude dry air intrusion with subsidence above is located to the west and southwest of PGI30L, while a SAL outbreak is located just east of PGI30L and north of PGI31L (Fig. 1). A deep layer ridge is currently steering PGI30I to the WSW, while the persistent region of deep convection near PGI31L continues to favor development of this large area of elongated (though consolidating) vorticity centered ~500-600 km SW of PGI31L. Farther east in the North Atlantic the weak shortwave over the western Sahara has lifted out and the ridge to the east has built westward. This has helped re-establish an E-W oriented subtropical

Example Weather Forecast - accompanying figure

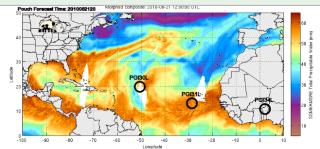


Fig. 1.

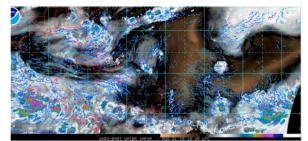


Fig. 2.

Example Weather Forecast - accompanying figure

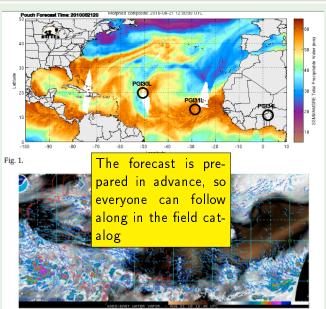
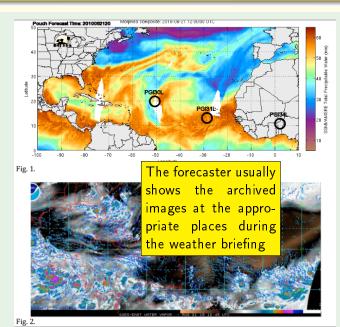



Fig. 2.

Example Weather Forecast - accompanying figure

Flight Scientist Summary (excerpt)

Author of Report: Michael Bell

Type of Event: RF06, 2010/08/30 09:07 - 2010 08 30 18:07

Research flight 06 was conducted into PGI36L from Barbados after the evacuation of the G-V due to Hurricane Earl (Image 1). The models indicated a well-developed pouch, with sustained convection evident in satellite imagery near the center of the pattern prior to take-off. Take-off was 0900 UTC, with a 1:20 hour ferry to the first drop point. Surface winds were the strongest on the northeast side of the pattern, with whitecaps visible from the aircraft at 1222 UTC (Image 2). The proximity to Barbados allowed for an extended dropsonde pattern of 30 sondes, centered on the pouch sweet spot, and a low-level circulation became evident in the earth-relative frame from the real-time display (Image 3, 1319) UTC). Several overshooting tops were visible throughout the flight (Image 4, 1357 UTC) that frequently matched with the satellite identifications provided by the CIMSS algorithm, providing high

DAILY REPORTS Status of GV Instrumentation

PREDICT NCAR_GV Instrument Status Report

Date of report(UTC): 2010/09/21 12:00 Author of report: schanot Submitted at/UTC): 2010/09/22 15:15

Remaining flight hours: 56.6

General Comments:

Research flight rf21 (5.9 hrs) was flown into PGI-46. Pattern restricted by lack of access to Venezualian airspace. NASA DC-8 filed to cover, but was denied acces

INSTRUMENTS/SYSTEMS STATUS

= up; = provisional; = down; = no report

RAF-Supplied Instrumentation Airborne Data System Comment: occational DSM drops on left wing Aircraft Position, Velocity and Attitude Comment: Static Pressures Comment GPS and Pressure Altitude Comment: Novatel/Globalstar GPS OK, Garmin required an in-flight reset Ambient Temperature Comment one high IWC events. 6. Flow Angle Sensors, Radome Comment ADIFR & BDIFR affected by ice. Use IWD & IWS for 2D winds **Dew Point and Humidity** 7 Dew Point sensors Comment DPR - OK; New DPL this fit, Range not adequate to reach low values - bad for fit Comment 8. TDL Humidity 9. PMS Liquid Water Sensor (King) (PLWC) Comment: 10 Raw Icing-Rate Indicator (RICE) Comment: DSM would not boot. Bad power supply 11. VCSEL Hygrometer Comment low laser power levels during fianl descent Wing Stores 12. UHSAS Comment: usual issues as flight progresses, water in filter? 13 Cloud Droplet Probe (CDP) Comment: DSM would not boot. Bad power supply 14. Microwave Temp Profiler (MTP) Comment 2D-C Particle Imager (25µ) Comment: minor gaps, in-flight DSM auto reboots occurred Small Ice Detector (SID-II) Comment

OTHER MATERIAL IN THE PREDICT FIELD CATALOG

Summary of Missions

Flight	Date	System	O perations Area	Maximum Intensity During System Lifetime	Catalog Products	GV Dropsonde kmls	DC8 Dropsonde km is	Flight Summary	Notes
RF01	Aug 15	Disturbance	Western Atlantic	Disturbance	Operational Model Research	Points 1000mb Values 925mb Values 8 50mb Values 700mb Values 500mb Values 500mb Values Values Values Values Values Values Values Values Values		Mission Scientist Summery Science Director Summery	Shakedown Threatigation of stalled Brothal boundary and upper tropospheric shear line in the stanty of the Bahamas.
RF02	Aug 17	PGI27L	Caribbean	Disturbance	Operational Model Research	Points 1000mb Valnds 925mb Valnds 850mb Valnds 700mb Valnds 500mb Valnds 500mb Valnds		Mission Scientist Summary Science Dredor Summary	Pind mission into PGI271, which had only recently begun to develop convection.
RF03	Aug 18	PGI27L	Caribbean	Disturbance	Operational Model Research	Points 1000mb Winds 925mb Winds 850mb Winds 700mb		Masion Scientist Surmary	Second mission into PSIZZL during which a large MCS developed the northeastern part of the flight region.

OTHER MATERIAL IN THE PREDICT FIELD CATALOG

Summary of Missions

Flight	Date	System	Operations Area	Maximum Intensity During System Lifetime	Catalog Products	GV Dropsonde kmis	DC8 Dropsonde km is	Flight Summary	Notes
RF01	Aug 15	Disturbance	Western Atlantic	Disturbance	Operational Model Research	Points 1000mb Winds 925mb Winds 8 50mb Winds 700mb Winds 500mb Winds 250mb Winds		Mission Scientist Summery Science Director Summery	Shakedown hwedigalon of dailed frontal boundary and upper tropospheric shear line in the wordly of the Baharmas.
RF02	Aug 17	PGI27L	Caribbean	Disturbance	Operational Model Research	Points 1000mb Valinds 925mb Valinds 850mb Valinds 700mb Valinds 500mb Valinds 250mb Valinds 250mb Valinds		Mission Scientist Summary Science Director Summary	Phrafimission into PGIZZ L which had only recently begun to develop deep convedicion.
RF03	Aug 18	PGI27L	Caribbean	Disturbance	Operational Model Research	Points 1000mb Winds 925mb Winds 850mb Winds 700mb		Mexicon Scientist Summary Science Director	Second mission into POSZ L. during which a large MDS developed in the northwastern part of the flight region.

Summary of Missions	OTHER MATERIAL	IN THE PREDICT	FIELD CATALOG
	Summary of Missions		

OTHER I	MATERIAL IN THE PREDICT FIELD CATALOG	ב ב
Science Director Summary	Shakedown/Investigation of stalled frontal boundary and upper tropospheric shear line in the vidnity of the Bahamas.	
Mission Scientist		

Scientist Summary First mission into PGi27L which had only recently begun to develop deep convection. Science Director Summary

OTHER MATERIAL IN THE PREDICT FIELD CATALOG

Summary of Missions

Flight	Date	System	O perations Area	Maximum Intensity During System Lifetime	Catalog Products	GV Dropsonde kmis	DC8 Dropsonde kmls	Flight Summary	Notes
RF01	Aug 15	Disturbance	Western Atlantic	Disturbance	Operational Model Research	Points 1000mb Winds 925mb Winds 8 50mb Winds 700mb Winds 500mb Winds 250mb Winds		Mission Scientist Summery Science Director Summery	Shakedown hwedigalon of dailed frontal boundary and upper tropospheric shear line in the wordly of the Baharmas.
RF02	Aug 17	PGI27L	Caribbean	Disturbance	Operational Model Research	Points 1000mb Valinds 925mb Valinds 850mb Valinds 500mb Valinds 500mb Valinds 250mb Valinds		Mission Scientist Summary Science Director Summary	Phratimission into PG1271, which had only recently begun to develop deep convedicion.
RF03	Aug 18	PGI27L	Caribbean	Disturbance	Operational Model Research	Points 1000mb Winds 925mb Winds 850mb Winds 700mb Winds		Masion Scientist Summary Science Director	Second mission into POSZ L.during which a large MCS developed in the northwatern part of the flight region.

Catalog	GV Dropsonde	DC8 Dropsonde	Flight		Notes		
_	ary of Missi			IL I KLDICI	TILLD	CATALOG	
$\cap T$	IED N//	TEDIA	LINITE	HE PREDICT	EIELD	$C\Lambda T\Lambda I \cap C$	

_	Cultimary of Miller in						
	Catalog Products	GV Dropsonde kmls	DC8 Dropsonde kmls	Flight Summary	Notes		
		Points 1000mb					

	virius		
	925mb	Mission	
	Winds	Scientist	
mal	850mb	Summary	
1	Winds		
<u>ch</u>	700mb	Science	
	Winds	Director	

Operatio

Mode

500mb

Resear

Shakedown/investigation of stalled frontal boundary and upper Bahamas.

	Science Director Summary	tropospheric shear line in the widnity of the E
2	<u>Mission</u>	

Winds 500mb Winds 250mb Winds	Summary	
Points 1000mb		
Winds 935mb	Meeton	

925mb

Winds Scientist

850mb Summary First mission into PGi27 L which had only recently begun to develop

Operational Winds

Model deep convection. Research 700mb Science

Winds Director

Summary

OTHER MATÉRIAL IN THE PREDICT FIELD CATALOG

Research Products

Aircraft Products

- flight tracks
- dropsonde soundings (Skew-T plots)
- video from the GV flights

OTHER MATERIAL IN THE PREDICT FIELD CATALOG

Research Products

Aircraft Products

- flight tracks
- dropsonde soundings (Skew-T plots)
- video from the GV flights

Other Special Products

- Special soundings from the surface
- COSMIC soundings
- Special-use plots (sometimes generated for transmission to the GV)
- links to data archives containing preliminary "quick-look" data

- 1 Investigators find the field catalog useful:
 - (a) During operations, for mission planning
 - (b) As a reference at the start of analysis.

- 1 Investigators find the field catalog useful:
 - (a) During operations, for mission planning
 - (b) As a reference at the start of analysis.
- 2 It is customizable to fit project needs.

- Investigators find the field catalog useful:
 - (a) During operations, for mission planning
 - (b) As a reference at the start of analysis.
- 2 It is customizable to fit project needs.
- It is convenient to use, with forms that help standardize input.

- 1 Investigators find the field catalog useful:
 - (a) During operations, for mission planning
 - (b) As a reference at the start of analysis.
- 2 It is customizable to fit project needs.
- 1 It is convenient to use, with forms that help standardize input.
- It encourages progressive documentation.

- 1 Investigators find the field catalog useful:
 - (a) During operations, for mission planning
 - (b) As a reference at the start of analysis.
- ② It is customizable to fit project needs.
- 1 It is convenient to use, with forms that help standardize input.
- It encourages progressive documentation.

CONTACTS:

Further Information:

- Greg Stossmeister, gstoss@ucar.edu, 303-497-8692
- Steve Williams, sfw@ucar.edu, 303-497-8164
- Mike Daniels, daniels@ucar.edu, 303-497-8793
- Al Cooper, cooperw@ucar.edu, 303-497-1600